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: A SPECIAL INVESTIGATION TO DEVELOP A GENERAL METHOD FOR 
THREE-DIMENSIONAL PHOTOELASTIC STRESS ANALYSIS l 

By M. M. FROCHT and R. GUERNSEY, JR. 

SUMMARY 

The method of strain measurement after annealing is reviewed 
and fou,nd to be unsatisfactory for the materials available in 
this country. A new, general method is described for the photo- 
elastic determination of the principai stresses at any point of a 
general body subjected to arbitrary loads. The method has 
been applied to a sphere subjected to diametral compressive 
loads. The results show possibilities of high accuracy, 

INTRODUCTION 

second part presents the theory of the new method. The 
third part contains the application of the new method to 
the determination of stresses in a diametrically compressed 
sphere. 

It is known that purely photoelastic procedures cannot 
solve the general three-dimensional stress problem. The 
phot,oclastic method furnishes five independent equations, 
whereas the complete specification of the state of stress at 
a point requires six relations to determine six unknown stress 
components. 

In order to obtain a sixth relation it has been suggested 
t.hat the frozen slices removed from the model bc annealed 
and strain measurements be made after annealing. This 
suggestion has recently received a rather extensive treat- 
ment from Prigorovslry and Preiss in Russia (reference 1). 
A careful analysis of this suggested method shows t.hat its 
successful application requires model materials having 
relatively low values of Poisson’s ratio at the elevated 
temperatures used in the freezing process. Such materials 
are not available in this country. Fosterite and Bakelite, 
which are the best available materials, have Poisson’s 
ratios approximately equal to l/2. It is further shown that 
the method of strain measurement after annealing breaks 
down when this ratio approaches l/2. 

The investigation was conducted in the Photoelastic 
Laboratory of the Mechanics Department at the Illinois 
Institute of Technology under the sponsorship and with the 
financial assistance of the National Advisory Committee 
for Aeronautics. The Research Corporation provided the 
funds for the fellowship held by Mr. Roscoe Guernsey, Jr. 
Mr. David Landsberg, Assistant Research Engineer in 
Experimental Stress Analysis, assisted in all experimental 
phases of the work. It is a pleasure to acknowledge his 
cooperation. Acknowledgment is also due Mrs. Dora L. 
Frocht for her assistance in the translation of the paper by 
Prigorovsky and Preiss (reference 1). 

SYMBOLS 

normal stresses, psi 

In this report a new method is described which does not 
depend on Poisson’s ratio and therefore can be used with 
models made of Fosterite and Bakelite. This method 
employs frozen stress patterns from normal and oblique 
incidence. The separation of the principal stresses is 
obtained by the numerical integration of one of the differ- 
ential equations of equilibrium in Cartesian coordinates 
rather than by strain measurement after annealing which 
involves Poisson’s ratio. It will be shown that this permits 
the determination of all six stress components at each point 
of a body. 

shearing stresses, psi 
stresses on an inclined plane, psi 
principal stresses, psi 
secondary principal st.resses in XY-plane, psi 
secondary principal stresses in X&plane, psi 
normal stresses in fringes 
shearing stresses in fringes 
fringe orders at normal incidence for slices 

parallel to XY-plane, XZ-plane, and 
YZ-plane, respectively 

fringe orders at oblique incidence for rota- 
tions about Y-axis and Z-axis, respectively 

angle of rotation of a slice; also angle defining 
an inclined plane 

The report consists of three parts. The first part com- 
prises a survey and analysis of the method in three-dimen- 
sional photoelasticity which rests on the freezing and slicing 
processes and strain measurement after annealing. The 

isoclinic parameters at normal incidence for 
slices parallel to XY-plane, XZ-plane, and 
YZ-plane, respectively 

isoclinic parameter at oblique incidence for 
rotation about Y-axis 

shear fringe value of slice, psi per fringe 
shear fringe value for slices parallel to XY- 

plane and XZ-plane, respectively 
shear fringe value for actual light path in 

slices rotated about Y-axis 
shear fringe value of material, psi per fringe 

per inch 

* Supersedes NACA TN 2922, “A Special Investigntion to Develop a Ck?neml Method for Three-Dimensional phok&mtic Sk& Analysis” by M. M. Froeht and R. Quern.wy, Jr., 195? 



2 REPORT 1148-NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

cz, ql, ez linear strains 
E Young’s modulus, psi 

b 
Poisson’s ratio 
load, pounds 

A area of equatorial plane of sphere, square 
inches 

AC area of surfaces of contact, square inches 
R radius of sphere, inches 
RC radius of contact areas, inches 
az, a,, az normal stresses in terms of P/A 
:zu, 712, 722 shearing stresses in terms of P/A 
uu I contact pressure in terms of P/AC 
71/zr contact shearing stress in terms of P/A, 

SURVEY AND ANALYSIS OF EXISTING METHODS 

FROZEN STRESSES AND OBLIQUE INCJDENCE 

Frozen pattern--It is now well established that elastic 
stress systems can be fixed or frozen into models made of 
certain diphase plastics and that such models with frozen 
stresses can be sliced into thin sections without disturbing 
the fixed pattern (references 2 to 5). Observations of such 
slices in a polariscope yield the relative retardations as well 
as the isoclinic parameters at each point of the pattern. 

Oblique incidence.-The use of oblique incidence of a 
collimated beam of light, as suggested by Drucker and 
Mindlin, adds materially to the information obtainable 
photoelastically (references 6 and 7). The retardation and 
isoclinics at normal incidence are a function of the secondary 
principal stresses in the plane of the slice, while those at 
oblique incidence depend on the secondary principal stresses 
in a plane perpendicular to the wave normal at each point 
of the slice. 

The basic relation for oblique incidence with rotation 
about the Z-axis is given by t.he following expression 

(2Fn&)2= -& { [(u,-u~)+(u~-u~) 8in20,+71y sin 20,12+ 
’ 4(~=~ cos e2+ run sin 19,)‘) (1) 

The system of notation used in this report is shown in 
figure 1. Normal st.resses are positive when tensile and 
negative when compressive. The four components of sheal 
in the XY-plane are referred to either as the 7zy or the 7Uz 
shear system, and the sign of this system is positive when 
the shearing components are as shown in figure 1 (reference 
8, par. 1.3). Similarly the shear system in the YZ-plane 
is positive if t.he components arc as shown in figure 1. No 
signs are att,ached to individual &caring stress components, 
their directions being determined by inspection (reference 
8, par. 8.2). 

By combining the data from five stress patterns of different 
obliqueness it is possible to determine the three differences 
between the normal stress components and the three systems 
of shearing stresses at each point in the slice (for convenience 
the plane of the slice is taken as one of the coordinate planes). 

It can be shown that from the five quantit.ies obtained 
with the aid of oblique incidence it is possible in turn to 

X 

FIGURE I.-Positive normal stress components and positive systems 
of shearing stresses. 

obtain the three principal shears at all points of the section. 
This is equivalent to determining Mohr’s circle for a three- 
dimensional state of stress except for its origin which remains 
incleterminate. 

Limitations of purely photoelastic data.-Except for special 
cases, the optical data by themselves are insufficient for the 
determination of the individual principal stresses. This 
limitation results from the fact that isotropic stress systems 
produce no photoelastic effects. Consequently, two states 
of stress differing by an arbit.rary isotropic system produce 
equal photoclastic effects. 

The method employing scat.tered light, or the Tyndall 
effect, which was developed in this country by Weller 
(references 9 and 10) and independently by Mengcs (refer- 
ence 11) suffers from the same limitation. 

The method of convergent light employed by Hiltscher 
(reference 12) and by Ku&e (reference 13) makes it possible 
to determine also the directions of the principal stresses but 
not their magnitudes. 

SEPARATION OF PRINCIPAL STRESSES 

Free surfaces.-The limitation mentioned above does not 
hold at free boundary surfaces. A free surface is subjected 
to only two principal stresses, similar to those in plane stress 
systems. Tangential slices yield directly the difference 
between the principal surface stresses. If in addition a slice 
is taken normal to the surface ancl parallel to one principal 
stress, it is possible to determine the indiviclual principal 
stresses on the surface (fig. 2). This method has been em- 
ployed by Leven and Frocht (reference 14) to determine 
the principal stresses on the surface of Diesel engine valves. 
Leven (reference 15) has also applied this method to the 
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FIGURE 2.-Slices and directions of light for determination of surface 
stresses. I,, direction of light. 

problem of surface stresses in torsion, and Hetenyi (reference 
16) has applied it to threaded connections. In these appli- 
cations the faces of the slice were oriented to be normal to 
the direction of a collimated polarized beam. 

In special cases the combination of oblique and normal 
incidence leads to a complete determination of the principal 
stresses. Using this combination, the stress distribution in 
Saint Venant torsion was determined (reference 17). 

Planes of symmetry.-For the special case where a plane 
of symmetry exists Jessop (reference 18) has developed an 
extension of the Lam&Maxwell equations (Filon’s graphical 
integration) to three-dimensional cases. By means of these 
extended equations it is possible to determine the stresses 
along the axis of symmetry. However, the method lacks 
generality. 

Strain measurement after annealing.-It has been sug- 
gested by Kuske (reference 5) that mechanical strain 
measurements after annealing in conjunction with the 

freezing method might be used to provide the additional 
relation necessary for the, determination of the principal 
stresses at a general point. If it be assumed that t.he differ- 
ences between the three normal stress components at a 
point have been found photoelastically from equation (l), 
there result: 

uz- cry= c*, 

uv - uz= \ c,, 

( 

(2) 

uz- ur= c,, 

where the C’s represent constants. If now the slice from the 
model containing the frozen stresses is annealed, the state 
of stress is relieved and the thickness of the slice at each 
point will return to its original unstressed value. From this 
change in thickness, if it can be measured with accuracy, 
the strain at a point in a direction perpendicular to the slice 
can be computed. Taking this direction as the Z-axis, for 
instance, the strain would be Q. Then from Hooke’s law, 

%=; l~,-v(u,+a,)l (34 

which may be written as 

c*=; [(~--2Y)u,+Y(uz-uI/)+~(uz-uz)l W 

from which 
u =EE,--V(u,--v)-v(u,--*) z l-2v (44 

In view of equations (2) this gives the stress component gr 
after which cl: and ul, are readily found. The entire state 
of stress has thus been determined. 

LIMITATIONS OF MECHANICAL STRAIN MEASUREMENT 

Poisson’s ratio equal l/2.-The method outlined above 
would seem to solve the problem and offer a powerful method 
of attack. Closer examination discloses certain serious dif- 
ficulties. For the photoelastic materials used in this country, 
such as Fosterite and Bakelite, Poisson’s ratio is very nearly 
l/2 at the elevated temperatures used in the freezing process, 
and for this value of Y the method breaks down. 

Thus, inspection of the general equations of Hooke’s law 

shows that when u~=u~=u~, that is, when the stresses form 
an isotropic system, and, in addition, the value of Poisson’s 
ratio v is l/2, then 

Ez=Ey=Ez=O ^ 
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In ‘other words, isotropic systems of stresses produce no 
strains. Hence, two stress systems differing by an arbitrary 
isotropic system produce the same strains. Thus, when 
Poisson’s ratio is 112 a given strain field does not determine a 
unique stress field, although the converse is not true. Strain 
measurement when v= l/2 thus adds nothing to the general 
solution of the three-dimensional problem. 

Poisson’s ratio nearly l/2.-If Poisson’s ratio is slightly less 
than l/2, the method of strain measurement after annealing 
should theoretically lead to a solution. However, other 
difficulties arise. Equation (4a) may be written as 

CT,?= EEL-v(Cw+CzJ 
I-2v (4b) 

If v is the true value of Poisson’s ratio and V+ Av is its experi- 
mentally determined value, then the error Au, in the com- 
puted stress uz’= uzj-Au, for a measured cr is 

I 
fJz - uz=Auz= 1 &A, (uz+uv’ 

With v very close to l/2, a very small error Av in Poisson’s 
ratio may lead to large errors Au, in the computed stress. 
For instance, if v=O.48 is assumed, which is the approximate 
value for Fosterite, and Av is taken as only 0.01, then 

0.01 
Au~=~$ (uz+u,)=0.50(az+u,) (6b) 

Experimental measurements of V.-Experiments with the 
determination of Poisson’s ratio for Fosterite and similar 
plastics indicate that it will be rather difficult to determine 
the value of v closer than f5 percent. The error Au, in 
equat.ion (6b) would be particularly large when u2 and u,, 
happen to be of the same sign and each is large in comparison 
with uz. All things considered, no great accuracy can be 
expected from this method so long as Poisson’s ratio is 
nearly l/2. 

It must be pointed out, however, that strain measure- 
ments may serve a useful purpose. Assuming that, in some 
way or other, the normal stress components have been 
found, the strains can be calculated and compared with 
those found experimentally. Here the error in the computed 
strains due to an error in Poisson’s ratio is given by 

A,,=-& (uz+ u,)Av (7) 

which is not large. 

METHOD SUGGESTED BY PRIGOROVSKY AND PRElSS 

The method outlined above for the separation of the 
principal stresses which employs obIique and normal inci- 
dence of collimated polarized light and strain measurement 
after annealing is not the only possible procedure. Prigo- 
rovsky and Preiss suggest two alternative methods in refer- 
ence 1. Their procedures combine (1) stress patterns from 
normal and oblique incidence with (2) axis patterns from 

convergent polarized light and (3) strain measurements after 
annealing. The significant point lies in the fact that their 
method utilizes strain measurement after annealing and 
therefore breaks down when Poisson’s ratio equals 112. 

THEORY OF SHEAR DIFFERENCE METHOD 

General theory.-A method for determining stresses in 
three-dimensional problems is now proposed which is com- 
pletely general. With this method the six stress components 
at any point may be found. It is essentialIy an extension 
to three dimensions of the method, long and effectively used 
for plane problems, which is known as the shear difference 
m.ethod (reference 8, ch. 8). 

-X 

FIGURE X.-Auxiliary lines in XY- and X%-planes for shear difference 
method. 

Consider an arbitrarily loaded unsymmetrical model with 
the set of coordinate axes as shown in figure 3. Let a straight 
line AB be drawn through point i from boundary to bound- 
ary and let this line be taken as t)he X-axis. At any point 
along this line the first differential equa.tion of equilibrium, 
with body forces neglected, is 

&2+c$++J 

and upon integration the stress at any point j is given by 

(8) 

where (a,), denotes the stress at point A and (u,)~, the stress 
at any qther point j on the line AB. The partial derivative 
br,&y is the rate of change of 7yz with respect to y and 
br,,Jbz is the rate of change of 7zz with respect to z. Thus 
if values of 7112 were computed along a line through i parallel 
to the Y-axis and the curve ~,~=f(y) were plotted, then 

would be the slope of the curve -f(y) at point i. 

arm Similarly __ ( > bz i 
is the slope of the curve ~*~=g(z() at point i. 

As in the plane problem, these slopes may be approximated 
by computing the shearing stresses at points near i on oppo- 

site sides of the line AB and forming finite difference quotients. 
Thus, choosing neighboring points C and D in the XY-plane 
and similarly points E and F in the XZ-plane, 
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(104 

(1 ob) 

Thus if the shearing stresses can be determined along four 
auxiliary lines, parallel to and on opposite sides of AR, two 
lines in the XY-plane and two in the XZ-plane, one has all 
the data necessary to obtain the quotients on the right side 
of equations (10) and hence good approximations to the 
partial derivatives. In evaluating equations (lo), care 
must be taken to attach the proper signs to the shear systems 
ryz and rzx, as in figure 1. 

Substituting the above approximations for the partial 
derivatives in equation (9) and replacing the integrals by 
summations, the following equation is obtained: 

i Aryz j AT (Up,=,-x -__ As-x 2 Ax 
a AY a AZ (114 

The summations are evaluated graphically in the same man- 
ner as in plane problems. For convenience, Ay and AZ may be 
taken numerically equal to Ax. Then equation (1 la) becomes 

(uz~,=(u3,~1-$’ AT,,+ Arzx- (lib) 

in which ArVz and AT,, have the mean value in each 
interval As. 

Shearing stresses in first slice--In order to carry out this 
integration, it is necessary to determine the magnitude and 
direction of shearing stresses 7yz along the two auxiliary lines 
in the XY-plane and of 7,, along the two auxilmry lines in 
the XZ-plane. The shearing stresses ryz arc obtained from 
a slice in the XY-plant containing AB in its middle surface. 
The stress pattern of this slice from normal incidence will 
give the difference between the secondary principal stresses 
in the plane of the slice at all points, and the corresponding 
isoclinics furnish their orientation. The magnitude of the 
shearing stress 7yz at any point will then be given by 

7yr=i (p’-q’) sin 24’ WW 

where p’ and q’ are the secondary principal stresses in the 
XY-plane and 4’ is the isoclinic parameter. The directions 
are determined by inspection as in paragraph 8.2 of reference 
8. Using equation (12a>, the shearing stresses 7,/Z along the 
auxiliary lines and along AB itself may be found. 

Shearing stresses in second slice.-A second slice lying in 
the XZ-plane and containing line AB would furnish similar 
information for Tag. Here a practical difficulty arises since 
the first slice removes an essential part of the second slice. 
One of several procedures may be used to eliminate this 
difficulty. 

(1) In the general case two identical models, identically 
loaded, may be used, one for the XY slice and one for the 
XZ slice. The shearing stresses ryz for the XY slice are 

calculated from equation (12a). Similarly, the shearing 
stresses 7zz for the XZ slice are given by 

Tzz=$ ($1 -q”) sin 24” (12b) 

where p” and q” are the secondary principal stresses and 4” 
is the isoclinic parameter in the XZ slice. 

(2) In large models it ma.y be possible to use a sub slice 
from the main slice for determining 7zz. After the data are 
obtained from the main slice, a small section containing the 
line AB is cut from it, as shown in figure 4 (a).’ The -neces- 
sary data in the XZ-plane are then obtained from normal 
incidence on the sub slice, as shown. This procedure is 
feasible if the model is large so that the main slice can be 
made of sufficient thickness. 

(3) In the particular case where a plane of stress symmetry 
exists, such as the XY-plane in figure 4 (b), advantage can 
be taken of this symmetry. Referring to figure 4 (b), let it 

(b) 

(a) Sub slice. 
(b) Loaded model. 
(c) Slices from opposite sides of plane of symmetry. 

FIGURE 4.-Schematic diagram of necessary slices. 
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‘be assumed that the stresses on line AB?are required. The 
first slice is made parallel to the XY-$1&e and contains the 
line AB as shown in figure 4 (c). The orthogonal slice is 
cut from the opposite side of the body sq,that it contains t,he 
symmet,rically placed line A’B’, along which the stresses are 
the same as along AB itself. The necessary shearing st,resses 
are calculated as outlined in procedure ,($), above. 

Normal stresses.-The starting value.(p,), will be obtained 
from boundary conditions and boundary fringe orders. The 
integration may then be carried out and values of u, ob- 
tained along AB. Further, from MQ~‘s circle or other 
considerations: 

(uz-uu)?= (~‘-a’)~ cos 2+‘j=2F’n’j cos 2+‘j (134 

(uz-uJj= (~“-4”)~ cos 2+“j=2F”n”j cos 2+~“~ (13b) 

where the F’s and 7~‘s denote, respectively, fringe value of 
the model in shear and fringe order at point j. From 
equations (13a) and (13b) 

(u,)j= (uz)j- (f-q’)? cos 2&j (13c) 

(a,)j= (uz)j- (p”-q”)j cos 2+“j OW 

All the necessary data for the evaluation of (u,)~ and (uz)j 
are obtained from the slices in the XY- and XZ-planes, 
respectively. 

Use of oblique incidence.-At this stage five of the six 
stress components, namely u,, ul/, u,, TV=, and 722, have been 
found at all points of AB. There remains one unknown 
stress component ruz. The shear system ~~~ has no influence 
on the stress patterns from normal incidence for either one 
of the slices but will have an effect on the patterns from 
oblique incidence. 

FIGURE 5.-Xormal incidence and oblique incidence for different 
directions of rotation. 

In order to find the shear system T,,~ an oblique stress 
pattern is obtained from either one of the two slices. For 
concreteness assume that the slice parallel to the XY-plane 
is used and that it is rotated in a clockwise direction about 
the Y-axis through an arbitrary angle Bu. Figure 5 shows 
a view of a small element as seen from the positive end of 
the Y-axis. From equation (1) the fringe order neV at any 
point due to the oblique incidence is given by 

- 
’ 

2Feynoy= 
[u,- (a, cos20,+u, sin20y-7,z sin 2&J]“+ 

4 (T,Z cos t$-~~~ sin BJ2 (14a) 

in which a,, ul/, and uz are the known normal stresses 
and ryz and rIz are the known shear systems. Also the 

isoclinic parameter ~$8~ for the oblique incidence is given by 
the expression 

sin 24ey= rvz cos O,- rgr sin e, 
Fe,m (154 

If the rotation about the Y-axis he made in the counter- 
clockwise direction then 

2Feynngy= [u,- (uz c0S2e,fu, sin2e,+7,, sin 2e,)p+ 
4 (Tt/Z sin e,+TVz cos e,)2 (14b) 

and 

(15b) 

Similar equations may be written for rotation of the slice 
parallel to the XZ-plane about the Z-axis. 

It is to be noted that in general the retardation observed 
at any point depends on the direction of rotation of the slice. 
For one direction of rotation the fringe order at a point will 
be different from its value for the other direction. In the 
particular case when the slice contains a principal plane, 
then 7z2=~zy=0 and equations (14a) and (14b) become 
identical. In such cases the direction of rotation is im- 
material. In dealing with general slices it is important to 
note carefully the direction of rotation relative to the wave 
normal and to attach the proper signs to all the stresses. 

Each of equations (14a), (14b), (15a), and (15b) may be 
solved for the unknown shear system 7yz. It is necessary 
only to determine the fringe order and the isoclinic parameter 
+oV along the line AB. If the rotation is counterclockwise 
equation (14b) or (15b) is appropriate. Of these, equation 
(15b) is much the simpler. Using equation (15b) and e=4P 
there is obtained 

With this, 7yz is easily computed. All six components of 
stress are thus determined for the point i, and therefore the 
principal stresses themselves are determined at the given 
point. 

Extension to the plastic states-It should be noted that 
the method described in this report is not limited to a linear 
stress-optic law. With minor modifications, which are 
stated below, the method is equally valid for a nonlinear 
stress-optic law. Thus, the method is applicable not only 
to the elastic state but also to the plastic state of the model. 
This follows from the fact that the only equations, in addition 
to the stress-optic law, are the equations of equilibrium 
which are independent of stress-strain relations. 

In order to adapt the equations to a nonlinear stress-optic 
law it is necessary to observe that whereas in the linear 
range fringes can be used as the unit of stress, since the 
stress is proportional to the fringe order, in the nonlinear 
range fringes cannot serve as the unit of stress, since propor- 
tionality between stress and birefringence no longer exists. 
To obviate this difficulty all fringe orders in the equations 
should be converted into standard units, say pounds per 
square inch, as was done in all preceding equations. 
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Now, let the nonlinear stress-optic law be given by 

r mm= cP-d/2=7(4 

where I is a known function of n. If one replaces the 
products FXn by T(n) in equations (14) and (15) these 
equations are directly applicable to a nonlinear stress-optic 
law. It should, however, be noted that the results will 
apply to the model only and are not directly transferable to 
the prototype. It is also observed that the photoelastic 
models are assumed to be free from strain-hardening. 

Effect of Poisson’s ratio--In conclusion, it should be 
noted that in transferring the results from three-dimensional 
photoelastic models to metal prototypes the effect of Poisson’s 
ratio will have to be considered. It is fortunate, as shown 
by the theoretical solutions obtained to date, that the effect 
of Poisson’s ratio on the most significant stresses is small 
(references 19 and 20). 

APPLICATION OF SHEAR DIFFERENCE METHOD TO 
A DIAMETRICALLY COMPRESSED SPHERE 

DESCRIPTION OF APPARATUS 

The apparatus used in t,his investigation consisted of the 
following items: 

(1) An electric furnace with tcmperaturc controls and 
built-in loading frame with special jigs 

(2) An g-inch photoelastic polariscope with a special im- 
mersion tank 

(3) An oblique incidence jig 
(4) A Babinet-Soleil compensator 

A photograph of the clcctric furnace is shown in figure 6. 
This is a relatively large oven 46 inches high, 42 inches wide, 
and 19 inches deep. It is fitted with automatic temperature 
controls by means of which any desired thermal cycle coulcl 
be imposed on the model. The furnace was equipped with 
a built-in loading frame suitable for the application of all 
basic types of loading. 

A special loading jig built for the investigation is shown in 
figure 7. It consisted of a smooth circular shaft about l/2 
inch in diameter passing through a pair of smooth, lubricated 
guide holes carefully alined so that the axis of the shaft was 
perpendicular to the base. The load was applied to the top 

FIGURE B.-Electric furnace and control panel. 

FIGURE 7.-Loading jig and model of sphere. 

of the shaft through a hard steel ball. This jig was found 
to give almost perfect vertical loading and the friction was 
negligible. 

A special jig was also built for oblique incidence. The 
frame of the jig can be rotated about a vertical axis%hrough 
any desired angle which can easily be measured to one-tenth 
of a degree. The slice was mounted in the frame of the jig 
and the whole unit was placed in an immersion tank with 
a suitable mixture of Hdowax and mineral oil. 

The remaining equipment was standard apparatus in 
photoelastic laboratories, the descriptions of which are avail- 
able in the literature. 

TEST PROCEDURE 

Model.-The sphere was machined from a cylinder of 
Fosterite which was previously annealed to reduce initial 
stresses. The machining was carried out in a lathe. The 
rough cylinder of Fosterite was first turned to a true cylinder. 
In order to form the sphere a tool bit was set in a special jig 
riding on the carriage of the lathe. This bit could be rotated 
about a vertical axis lying in the plane of the lathe centers. 
The cutting was performed by swinging the tool bit by hand 
around its vertical axis while the cylinder was rotating, and 
the radius of the sphere was slowly reduced by bringing the 
tool bit gradually closer to its axis. In this way it was 
possible to shape the complete sphere except for a relatively 
small nipple near the chuck. The final diameter of the 
sphere was 3.313f0.002 inches. 
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Loading.-The sphere was placed in the loading jig and 
carefully alined for diametral compressive loading. The 
model was then heated to 162’ F in the electric furnace, the 
rate of heating being about loo F per hour. A load of 172 
pounds was then applied to the model. After a soaking 
period of about 2 hours the temperature was lowered at the 
rate of 4’ F per hour to room temperature. The final 
diameter of the equatorial plane was found to be 3.334 inches 
and the load axis was measured as 3.102 inches. Although 
relatively large deformations were developed in the loaded 
regions, the main body of the sphere was not notably dis- 
torted from its original shape. The stress pattern of the 
whole sphere in figure 8 shows that the loads and the stresses 
were rotationahy symmetrical. 

L L-80280 
FIGURE S.-Stress pattern of whole sphere. 

Slicing.-In preparation for slicing the center lines of all 
the slices were carefully scribed on the sphere using the flat 
spots in the loaded regions as datum planes. The slices 
were t.hen sawed out roughly on a bandsaw to a thickness 
of about 318 inch. They were subsequently ground by hand 
to about l/&inch thickness in most cases. Great care was 
taken to keep the slices symmetrical with respect to their 
center lines. 

Figure 9 shows the slicing plan. The first slice removed 
was parallel to the equator and midway between the equator 
and the load point. Then from the opposite side of the 
sphere a meridian slice was removed. Next a slice contain- 
ing the equatorial plane was cut. Finally a slice parallel to 
the meridian slice and halfway out on the radius was removed. 

FIGURE O.-Slicing plan for sphere. 1, slice parallel to equator; 2, 
meridian slice; 3, slice parallel to meridian; and 4, equatorial slice. 

Stress patterns and isoclinics.-The slices were mounted 
in the oblique incidence jig and stress patterns at normal and 
oblique incidence were recorded phot.ographically. Typical 
stress patterns are shown in figures 10 to 15. Most of the 
normal incidence patterns show very few fringes. In order 
to obtain accurate data in these cases a Babinet-Soleil com- 
pensator was used to obtain the fringe-order distribution 
along the lines of interest by point-by-point exploration. 

FIGURE lO.-Stress pattern of meridian slice at normal incidence. 
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FIGURE 1 I.-Stress i, attern of meridian slice for a rotation of 45’ about 
Y-axis. 

FIGURE 12.-Stress pat.tern of slice parallel to equator at normal 
incidence. 

A black cross was made on the screen to mark the point on 
which attention should be centered. The model slice was 
then adjusted until the line of interest, on the image ran true 
on the intersection of the cross as the straining frame was 
moved 1aterall.v. Then beginning at the outer edge and 
moving the straining frame by a known a.mount after each 
observation the fringe order was obtained at a series of 
points along the line. From these data the curve of fringe- 
order distribution was plotted. 

FIGURE 13.~Stress patt,ern of slice parallel to equator for a rotation 
of 45’ about X-axis. 

FIGURE 14.-Stress pattern of slice parallel to meridian at normal 
incidence. 

It may be noted that fractional fringe orders can also be 
obtained by the Tardy method of compensation, the accu- 
racy being comparable with that of the Babinet-Soleil 
compensator. 

Isoclinic lines were recorded by one of two methods. For 
the over-all picture the isoclinic lines were photographed in 
most cases (figs. 16 and 17). From the photographs aver- 
aged sket,ches were prepared and used in making the cal- 
culations. On several lines direct sketchinq of the isoclinics 
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FIGURE 15.-Stress pattern of slice parallel to meridian for a rotation 
of 45” about Y-axis. 

FIGURE 16.-Typical isocliuic for meridian slice. 

FIGURE 17.-Typical isoclinic for slice parallel to meridian. 

was used with attention being confined to the particular ‘line 
of interest. Here the intersections of successive isoclinic 
lines with the line of interest were obtained at very short 
intervals, from which the distribution of the isoclinic param- 
eters along the line could be plotted. This method was 
found to be accurate and considerably less time consuming 
t$han the photographic method. White light was used in all 
isoclinic work. 

In plane stress systems the isoclinic parameter at a point 
on a free boundary is determined by the tangent to the 
boundary at the point. The isoclinic parameter thus 
changes from point to point along the boundary in general. 
This is not necessarily true for isoclinics of secondary prin- 
cipal stresses. In the slice parallel to the meridian the 
secondary princihal stresses at the boundary consist solely 
of one normal stress uZ which is horizontal. The boundary 
is therefore a zero isoclinic and no other isoclinic may inter- 
sect the boundary at any point. The higher order isoclinics 
therefore all lie within the bounclary forming closed loops 
in this case, as shown in figure 17. 

Fringe value.-The fringe value of the material was ob- 
tained from a small cylinder about l/2 inch in diameter and 
1): inches long. This was loaded in compression in the 
special loading jig used for the sphere and subjected to the 
same thermal cycle as the sphere. A portion of the cylinder 
was machined away to leave a V shape as shown in figure 18. 
The resulting stress pattern was then photographed (fig. 19). 
The V shape was used to make clearly visible the fringe of 
zero order occurring at the sharp edge of the wedge. In the 
cylinder itself the first few fringes crowd together near the 
boundary of the cylinder and it is practically impossible to 
identify the zero fringe. From the stress pattern in figure 
19 it was a simple matter to plot fringe order against posi- 
tion, which for the wedge described is a straight line (fig. 20). 

FIGURE 18.-Cross section of calibration member after machining of 
wedge. 
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FIGURE 20.-Fringe order for calibration member as a function of 
distance from edge of wedge. 

In this way the fringe order at the point where the plane 
faces of the V intersect the curved boundary of the cylinder 
could be accurately determined. At the same point the 
thickness h could also be measured accurately. With the 
measured fringe order and thickness the fringe value 2f of 
the material was found to be 3.0 psi per fringe, per inch 
compression. 

RESULTS 

Interior stresses.-The stress distribution was obtained 
along six lines passing through the interior of the sphere. 
The lines are indicated in figure 21 by the letters A-A, B-B, 
C-C, D-D, E-E, and F-F. Thus the six lines are defined 
as follows: 
A-A 
B-B 

c-c 

D-D 
E-E 

intersection of meridian slice with equatorial slice 
intersection of meridian slice with slice parallel to 

equator 
intersection of slice parallel to equator with slice 

parallel to meridian 
load line 
intersection of equatorial slice with slice parallel to 

meridian 

F-F intersection of slice parallel to the meridian slice 
with a meridian plane which is perpendicular to it 

In this problem advantage was taken of the symmetry of 
the sphere to eliminate the need for two models as discussed 
in the theoretical part of the report. In particular because 
of the rotational symmetry of the stresses one meridian 
slice could be taken to represent all meridian slices. 

.- 
Y 

P 

FIGURE 21.-Lines in sphere along which stress distributions were 
determined. 

Typical calculation--In order to make clear the application 
of the method the complete calculations for line C-C will 
now be given. The evaluation of the stresses along this 
line requires all the generality which would be encountered 
in a body devoid of symmetry. The basic data for the 
determination of the stresses on this line are obtained 
from the stress patterns and isoclinics at normal incidence 
of the two slices defining the line C-C and from the stress 
pattern and isoclinics of one of the slices at oblique incidence 
with rotation about an axis perpendicular to C-C and lying 
in the plane of the plate. 

Because of the symmetry of the stresses along C-C it is 
necessary only to deal with half the length of the line. This 
half length was divided into 10 equal subdivisions. The 
two necessary auxiliary lines were drawn parallel to it in 
each of the two orthogonal planes and spaced the length of 
one subdivision apart. 

The first step is to obtain the clistribution of the shearing 
stresses along line C-C and along the four auxiliary lines. 
This requires the determination of the distribution of the 
secondary principal stress differences and of the isoclinics 
along these lines. Figure 22 shows the curves of n”’ and 
4 “’ for the slice parallel to the meridian, and figure 23 
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FIGURE 22.-Distribution of fringe order n”’ and isoclinic parameter 
4 “’ for line C-C and two auxiliary lines in slice parallel to meridian. 
In curves II and III the letter c denotes the Y-coordinate of line C-C- 
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FIGURE 23.-Distribution of fringe order TL” and isoclinic parameter 
4” for line C-C and two auxiliary lines in slice parallel to equator. 
In curves II and III the letter c denotes the Y-coordinate of line C-C. 

shows n” and 4” for the slice parallel to the equator. With 
these data the required shearing stresses are computed at each 
division point of C-C. Thus, following equations (12) and 
expressing the stresses in terms of fringes, 

1 
n,,=- n 2 “’ sin 24” (164 

1 
n -- IZ - 3 n” sin 24” (16b) 

It will be noted that for positive values of z the shear system 
n,, is positive and nZZ is negative. 

As noted in the theoretical part of the report the integra- 
tion requires the use of the difference between the shearing 
stresses at the center of each subdivision. These differences 
are obtained from the curves representing the distribution 
of the shearing stresses just found. Figure 24 shows the 
curves of the shear differences for the two slices. 

The next step is to obtain the value of the normal stress 
n, at each division point by an integration of one of the dif- 
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FIGURE 2-l.-Dist,ribution of shear differences An,, and AT&,, 
for line C-C. 

ferential equations of equilibrium. The integration is car- 
ried out by approximation using summations to replace the 
integrals. The appropriate equation for line C-C is similar 
to equation (1 la), that is, 

Choosing Ax=Ay=Az the ratios of these quantities are unity. 
The signs of the ratios depend on the choice of axes and the 
direction of integration. The integration begins at the 
boundary and proceeds inward. Consequently AZ is nega- 
tive. The shear differences have been formed in such a way 
that Ay is positive and AX negative. The final form of the 
equation is therefore 

( .7b) 

The signs of the shear differences are as shown by the curves. 
In order to start the integration the value of (n,), is 

required. This must be determined from the boundary con- 
ditions and boundary fringe orders. From the fact that the 
boundary is unloaded it is evident that the principal stress 
normal to the boundary is zero. Inspection of the meridian 
slice shows that, excepting the loaded regions, the boundary 
stresses in the meridian section are also zero. The fringe 
order at the boundary of the slice parallel to the equat,or is 
0.58 fringe tension, and the direction of this stress makes an 
angle of 55.6O with line C-C. The boundary value of n,, is 
thus found from the equations of stress transformation as 
follows: 

(n,),=0.58 cos’ 55.60=0.185 (18) 

The expression for (n,)j therefore takes the form 

(ni)j=0.185+~An,,--CA~, (17c) c 

The integration is easily carried out in tabular form as 
shown in table I. 
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Once n, has been found’ the values of n, and n, are found 
from expressions similar to equation (13c), that is, 

nz=n,-n” cos 2&’ (194 

ny=n,‘-n”’ cos 2+“’ (lgb) 

This computation is shown in table II. 
The last step is to..determine the remaining shearing stress 

system nzy. This was obtained in this case from oblique 
incidence on the slice parallel to the meridian with rotation 
through 45’ about the Y-axis. Figure 25 shows the fringe 
order and isoclinic distributions along C-C for this case. 
With these data and the known values of nny, previously 
determined the required shearing stress component is found 
from an expression similar to equation (15~). Thus 

1 nzu=- nel/ sin 2+a1/--ngz 2 cm 

The results of this computation are shown in table III. 
This completes the solution for all six stress components along 
line C-C. In order to determine the stress bomponents in 
pounds per square inch it is necessary only to multiply the 
stresses in fringes by the proper fringe value of the slice. 

Using methods sim.ilar to those just. explained the stress 
components for all six lines have been determined. With 
the exception of line D-D integration began at the boundary 
and proceeded inward. For line D-D the starting point was 
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FIGURE 25.-Distribution of no. and 4~” along line C-C for a 45’ 
rotation of slice parallel to the meridian about the Y-axis. 

taken as the center of the sphere and integration proceeded 
upward. The starting value of n, for this line was taken to 
be that obtained from line A-A. The results of these com- 
putations are shown in figures 26 to 32. At the center of the 
sphere the stress components were found to be cV= -2BP/A 
and u,=a,=O.45P/A. These values may be compared with 
the stresses at the center of a disk under diametral compres- 
sion which are uy= -1.91P/A and az=0.64P/A. 
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FIGURE 26.-Distribution of normal stresses along line A-A. 
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FIGURE 29.-Distribution of shearing stresses along line C-C. 
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FIGURE 32.-Distribution of stresses along line F-F. 

Contact stresses at load points.-As noted previously the 
loads on the sphere produced considerable local deformation 
which resulted in flattened areas at the poles. Upon obser- 
vation of the meridian slice it was found that fringes and 
isoclinics were unusually clear right to the loaded boundary. 
It was therefore possible to continue the integration all the 
way to the loaded boundary along lines normal to the areas 
of contact and thereby to obtain approximations to the con- 
tact stresses. The stress components at the ends of line D-.D 
represent the contact stresses at the poles, that is, at the 
centers of the loaded areas. In order to determine, at least 
roughly, the actual distribution of the contact stresses over 
the loaded areas two additional slices normal to the loaded 
cones were cut from the remaining material of the sphere. 
The intersections of these slices with the meridian slice then 
Sefine two lines parallel to line D-D which extend from line 
B-B to the loaded boundary. Sta.rting values were taken 
Yom the stress distribution on line B-B previously obtained, 
tnd integration proceeded to the loaded boundary in the 
usual fashion. In this way the contact stresses at two points 
It different distances from the center were obtained. With 
these three points the distribution of the normal stresses on 
the contact surface could be pretty well determined. Thr. 
shearing stresses acting on the surface of contact were found 
from the values of n’ and the isoclinics +’ in a meridian section 
in the region of contact. The results are shown in figure 33, 
the directions of the shearing stresses being from the poles 
outward. 

Checks on accuracy.-Two types of checks are available 
in this problem, static checks and checks between stscsses on 
different lines. Static checks were made from the stresses 
on lines A-A and B-B and from those acting on a diameter 
in the surfaces of contact. Since these stresses are rotation- 
ally symmetrical the resultant force acting on the equatorial 
plane and on the plane containing line B-B parallel to the 
equator as well as on the plane of contact can be determined 
by integration. From the stresses on line A-A the resultant 
load on the equatorial plane was computed as 176 pounds, 
which is 2.3 percent higher than the applied load of 172 
pounds. The stresses on line B-B gave a resultant of 168 
pounds which is 2.3 percent low. Lastly the resultant of 
the normal stresses on the surface of contact was found to 
be 170 pounds, or 1.2 percent low. 
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1 

FIGURE 33.-Distribution of stresses on surfaces of contact. 

Points 0’ and 01’ (fig. 21) are common points on different 
lines. The stresses at these points can be determined from 
each line and the results compared. The stresses at. 0’ were 
found by integrating along line B-B and also by inlcgration 
along the path AOO’. From line B-B the stresses wcrc 
found to be n,=-4.08 and n.,=n,=0.40. From the path 
AOO’ they were found to bc n,=-4.06 and n.,=n,=0.42. 
At 01’ the stresses are found from lines C-C and F-F. 
From line C-C the stresses were computed as n,= -1.12, 
n,=-0.36, n.,=O.43, and n,,=0.62. From line F-F they 
were n,=-1.14, n,=-0.39, n,=0.40, and n,,=0.66. The 
agreement in these values is seen to be quite good. 

FIGURE 34.-Sketch relating stress components at a point on line E-B 
to those on line C-C. 

It is also possible to compute ‘the stresses on lines C-C 
and E-E from the stresses on lines A-A and B-B. Figure 34 
shows the rectangular stress components on lines C-C and 
B-B. The necessary equations for transformation are sim- 
ilar to the fami1ia.r equations for inclined planes in plane 
stress systems, that is, 

~A- uu uo=--+y21 cos 20+7,, sin 28. (214 

To=v sin 2e- 72y cos 28 @lb) 

The stresses computed by transformation were compared 
with the stresses independently determined on lines C-C and 
E-E by integration. The comparative values are shown in 
figures 28, 29, and 31. The general agreement is seen to be 
excellent. 

Check by the Lame-Maxwell equations.-Lines A-A and 
D-D are lines of symmetry for the sphere. For these special 
lines the stresses can be computed by the method outlined 
by Jessop (reference 18) using the extension of the La.mB- 
Maxwell equations to three dimensions. This computation 
has been carried out using fringe orders from the meridian 
and equatorial slices and thr 5“ isoclinic from the meridian 
slice. The comparative values arc given in figure 26 for 
line A-A and in figure 30 for line D-D. Inspection of the 
figures shows that in both cases the agreement is close. 

ANALYSIS AND DISCUSSION 

The prima.ry objective of the project under discussion was 
to develop a general method for solving three-dimensional 
problems photoelastically. In the theoretical part of this 
report such a method is described. The experimental work 
shows that the proposed method is practical. 

It is too early to draw broacl conclusions regarding the 
general accuracy of the new method. However, the cxcel- 
lcncc of the static checks and the c+onsistency of the rc~sults, 
as shown bg the close cross checks between the results from 
the various lines, seem to indicate possibilities of high ac- 
curacy. Unfortunately there is as yet no theoretical solution 
available for this particular problem to furnish conclusive 
checks and a measure of the errors.2 Nevert,heless there is a 
reasonable degree of certainty that the major stresses are 
free from significant error. 

It must be pointed out that the stresses as found here 
represent the solution for a material for which Poisson’s 
ratio is 0.48, whereas most structural materials have Poisson’s 
ratios of about 0.3. This is an inherent limitation of three- 
dimensional photoelasticity. However, as noted previously, 
the theoretical solutions available to date indicate that 
Poisson’s ratio has only a small influence on the major stresses 
althsugh the effect on the minor stresses may be pronounced 
(references 19 and 20). 

Although no theoretical solution is available for the sphere 
Hertz’s solution can be used to check the contact stresses 

2 A theoretical solution of this problem has recently been published. (See reference 21.) 
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determined photoelastically. According to Hertz’s solution 
the contact pressure is representable by the ordinates to a 
hemisphere erected on the contact surface. Further the 
Hertz theory predicts that the maximum contact pressure 
should be 1.5P/A,. Reference to figure 33 shows that the 
experimentally determined value of the maximum pressure 
is 1.53P/A,, which is 2 percent high. When it is considered 
that the path of integration used in determining the maximum 
pressure led along an equatorial radius to the center and 
thence up the load axis to the surface this is indeed a remark- 
able check. The general distribution of the pressures is 
also seen to be substantially correct. The proposed method 
would therefore seem to hold considerable promise for the 
determination of contact stresses. 

According to the Hertz theory the two principal stresses 
in the plane of the contact surface at the pole, gZ and (TV, 

1+2v 
should each equal 2 uy. For Poisson’s ratio of l/2 this 

reduces to (T$= (TV= cy which indicates that an isotropic point 
.exists at the pole, and therefore the shearing stress is zero 
at this point. This is borne out by the photoelastic results. 

Along the circular boundary of the surface of contact the 
l-2v P 

stress consists of a pure shear of the amount 3 A 
c > c 

according to the Hertz theory. If Poisson’s ratio is l/2 this 
expression vanishes. Hence the normal and shearing stresses 
at the boundary should be zero. The photoelastic results 
are seen to give this value. 

The problem treated in this report has complete rotational 
symmetry which simplifies the experimental t,echnique by 
eliminating the use of two models. No problem has as yet 
been solved which requires two models. The use of two 
models will no doubt introduce complications, but no insur- 
mountable difficulties are anticipated. However, further 
work must be done to demonstrate the effectiveness of the 
proposed met,hod with two models. 

There remains also the possibility of using sub slices from 
the main slice as discussed in the theoretical part. The 
model used in this investigation was not large enough to 
make t.his procedure feasible although some attempts were 
made. This possibility also needs to be further explored. 

It will perhaps also be desirable to repeat the solution of 
the sphere with smaller loads in order to reduce t’he relatively 
large local deformations. 

SUMMARY OF RESULTS 

The results from this investigation t,o develop a general 
method for three-dimensional photoelastic stress analysis 
may be summarized as follows: 

1. The method of strain measurement after annealing 
cannot be used with the materials now available in this 
country. 

2. A general photoelastic method for obtaining six stress 
component,s at any point of an unsymmetrical body arbi- 
trarily loaded has been developed. This method does not 
depend on Poisson’s ratio, although the results reflect the 
physical constants of the model. 

1 3. The new method is applicable in the plastic range of 
t the model. 

4. The method shows possibilities for the determination 
of contact stresses. 

5. The stresses existing in a sphere subjected to diametral 
compression have been determined with considerable 
accpracy. 

6. At the center of the sphere the stress components were 
found to be (TV= -2.59PJA and a,=a,=0.45P/A, where P is 
the load on the sphere and A is the area of the equatorial 
plane of the sphere. These values may be compared with 
the stresses at the center of a disk under diametral compres- 
sion which are a,- -1.91P/A and a,=0.64P/A. 

7. Further work is needed to determine the full potentiali- 
ties of the method when two models are used. Further work 
is also needed to determine t,he practicability of sub slices. 

ILLINOIS INSTITUTE OF TF,CIINOLOGY, 
CHICAGO 16, ILL., September i5, 1951. 
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TABLE II 

CALCULATION. OF NORMAL STRESS COMPONENTS FOR 
LINE C-C 

I I I I I I I I I I I 

~~__~___~___~~ ---__-__I_- l-l-__1 ----I 
/ 0 I 0.43 0.79 I l.oca I 1.55 I 1.000 0.79 1.55 -0.36 -1.12 
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___-- ___ --_ --- 
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2 n*=az-(n,-n,). 
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TABLE III 

CALCULATION OF SHEARING STRESS BY OBLIQUE 

0. 5 
0.6 
0. 7 

--__- 
0.8 

0.9 

1. 0 

INCIDENCE FOR LINE C--C 

2.22 34.8 

2.14 41.1) 

1.99 4i.4 

1.82 54. 8 

1 63 61.4 
~-__--- --_--~-_ 

1.42 R5.6 

1.20 n7.0 
__-- -.--_- 

0. 99 66.0 

(I. 79 62.0 

0.55 49.0 
_-__-- - -_-- 

0. 28 0 
__- 

__-__ --_I- 
0. 63 n -_--.----.- - ---- 
0.70 0.09 

_----.-- -- ------ 
0. i3 0. li 

U.i4 0.22 

0. 71 0.25 

~~-1L!!f~-~“-2j-~ 
0. 55 0.24 

0.4.5 0.21 
-c_- 

0.34 0.16 
-------.- -_---- 

0. m 0. 10 
-.~---.-- 

0 0 

0.63 

0.61 

0.5i 

0. 52 

n.4ci 

0.40 

0.31 
__-- 

0.24 
____ 

0. 18 
---- 

0.10 

0 


